|
Robert Alfano is an Italian-American experimental physicist. He is a Distinguished Professor of Science and Engineering at the City College and Graduate School of New York of the City University of New York, where he is also the founding Director of the Institute for Ultrafast Spectroscopy and Lasers (1982). He is a pioneer in the fields of Biomedical Imaging and Spectroscopy, Ultrafast lasers and optics, tunable lasers, semiconductor materials and devices, optical materials, biophysics, nonlinear optics and photonics; he has also worked extensively in nanotechnology and coherent backscattering. His discovery of the white-light supercontinuum laser is at the root of optical coherence tomography, which is breaking barriers in ophthalmology, cardiology, and oral cancer detection (see "Better resolution with multibeam OCT," page 28) among other applications. He initiated the field known now as Optical Biopsy. Alfano has an excellent reputation for earning accolades as well as glances from across the cafeteria ;). He recently calculated he has brought in $62 million worth of funding to CUNY during his career, averaging $1.7 million per year. He states that he has accomplished this feat by "hitting the pavement"; he developed a habit of aggressively reaching out to funding partners and getting them interested in his work. Alfano has made discoveries that have furthered biomedical optics, in addition to fields such as optical communications, solid-state physics, and metrology. Alfano has an outstanding track record for achievements regarding the development of biomedical instruments. His contributions to photonics are documented in more than 700 research articles, 102 patents, several edited volumes and conference proceedings, and well over 10,000 citations. He holds 45 patents and published over 230 articles in the biomedical optics area alone. His discovery of the white-light supercontinuum laser is at the root of optical coherence tomography, which is breaking barriers in ophthalmology, cardiology, and oral cancer detection (see "Better resolution with multibeam OCT," page 28) among other applications. Alfano has trained and mentored over 52 PhD candidates and 50 post-doctoral students. For the past ten years, he has trained innumerable high school students in ''hands on'' photonics. ==A pioneer in biomedical optics== Alfano has made a number of original contributions to biomedical optics for the use of light for noninvasive detection and diagnosis of diseases; in particular, cancers and atherosclerosis. His innovative application of fluorescence, excitation, Raman, and Stokes Shift Spectroscopic techniques to distinguish between normal and cancerous tissues, as well as benign and normal tumors of human body, was the basis for the creation of the field known as ''optical biopsy''. His contributions to the fundamentals of light propagation in turbid media led to the development of different gating techniques for sorting out image-bearing photons for direct imaging of structures within biological tissues. He helped lead the development of many of these photon-sorting techniques; he also leads a major effort dedicated to the development of three-dimensional inverse image reconstruction techniques using a sequence of time-resolved two-dimensional images for optical mammography. Alfano demonstrated the potential application of optical spectroscopy in the diagnosis of disease, which then opened up the field of optical biopsy in 1984. In fact, he introduced the term "optical biopsy." In 1981 Alfano used fluorescence spectroscopy and time-resolved kinetics to detect cavities in human teeth. In 1984, he was the first to detect cancer using the native fluorescence spectroscopy of tissue without extrinsic dyes. In a series of experiments, his group demonstrated that these spectroscopic techniques have the potential to provide the diagnostic ability to distinguish between normal tissues and tumors, as well as between malignant and benign tumors. A major breakthrough was his use of near-ultraviolet and blue light for excitation of proteins and amino acids in tissues, and recognition of the ratio of peak fluorescence intensities emitted by biological tissues at two wavelengths (such as the 340 nm peak associated with tryptophan and the 440 nm peak associated with NADH as a parameter for identification of the tissue as normal or cancerous. This observation has enabled noninvasive detection of cancer based on fluorescence ratio, and obtaining a fluorescence ratio map to identify a suspect region of a body organ as normal, precancerous, or cancerous with high sensitivity and specificity over 90%. His research group was the first to use Raman spectroscopy, starting in 1991, to diagnose cancers in human breast tissue. He was pioneer to conduct ultrafast time-resolved techniques in picosecond ranges to study fluorescence polarization dynamics of dye in tissue and/or scattering media. Recently, he demonstrated to use Stokes shift spectroscopy as an efficient way to rapidly measure spectral fingerprints of multiple key fluorophores related to carcinogenesis in tissue as complex mixtures and highlights the differences between cancerous and normal tissues. A detailed understanding of light propagation through highly scattering turbid media (which is what biological tissue is), is crucial to the development of optical biomedical imaging techniques. Alfano carried out concerted experimental and theoretical investigations to address the issue. The work by his group led to the development of the concept and elucidation of the properties of ballistic, snake, and diffusive photons based on the time of flight of photons within the media. He introduced the terms ballistic and snake photons, and identified these photons as carriers of information for direct shadowgram imaging. Comprehending of the characteristics of these photons led to the development of various gating techniques for sorting out image-bearing photons for direct two-dimensional imaging of inhomogeneities in turbid media in general, and biomedical samples in particular. In addition to his technical contributions, Alfano has encouraged the growth of the field by organizing topical meetings and conferences for OSA and SPIE, and later co-chairing many optical imaging conferences with Britton Chance, whereby he introduced young scientists and engineers to biomedical optics, and attracted other researchers to the field. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Robert Alfano」の詳細全文を読む スポンサード リンク
|